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 Abstract 

Averaging estimates is an effective way to improve accuracy when combining expert judgments, 

integrating group members’ judgments, or using advice to modify personal judgments. If the estimates of 

two judges ever fall on different sides of the truth, which we term bracketing, averaging must outperform 

the average judge for convex loss functions, such as Mean Absolute Deviation (MAD). We hypothesized 

that people often hold incorrect beliefs about averaging, falsely concluding that the average of two 

judges’ estimates would be no more accurate than the average judge. The experiments confirmed that this 

misconception was common across a range of tasks that involved reasoning from summary data 

(Experiment 1), from specific instances (Experiment 2), and conceptually (Experiment 3). However, this 

misconception decreased as observed or assumed bracketing rate increased (all three studies) and when 

bracketing was made more transparent (Experiment 2). Experiment 4 showed that flawed inferential rules 

and poor extensional reasoning abilities contributed to the misconception. We conclude by describing 

how people may face few opportunities to learn the benefits of averaging and how misappreciating 

averaging contributes to poor intuitive strategies for combining estimates. 
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 An old saying has it that two heads are better than one. This aphorism first gained scientific 

support in the 1920s and 1930s when psychologists discovered that averaging individual quantity 

judgments led to more accurate estimates than those of the average individual judge (Bruce, 1935; 

Gordon, 1924, 1935; Knight, 1921). However, a debate ensued. Why did so-called “statisticized” groups 

outperform the average individual? Is there truly something special about groups? As one writer put it, 

“In every coming together of minds… [t]here is the Creative Plus, which no one mind by itself could 

achieve” (Overstreet, 1925, cited in Watson, 1928). The ultimate conclusion, however, was that 

statisticized groups revealed nothing special about groups of people, but confirmed instead the statistical 

principle that aggregation of imperfect estimates reduces error (Eysenck, 1939; Kelley, 1925; Preston, 

1938; Stroop, 1932). In hindsight, it is surprising that it took two decades of theoretical arguments and 

empirical demonstrations to accept this conclusion (Lorge, Fox, Davitz, & Brenner, 1958; Steiner, 1972).  

Why did it take so long to grasp such a simple statistical principle? The answer, we believe, is 

that the principle is not so simple to recognize. People lack the intuition for it, and rarely have an 

opportunity to learn it. A consequence of misunderstanding averaging is that people use inferior 

approaches to aggregating uncertain quantity estimates. Individuals inappropriately use advice from 

others, frequently ignoring it or occasionally accepting it completely (Soll & Larrick, 2005). Judges avoid 

combining estimates across sources, such as forecast models that make different assumptions, because 

they do not understand that averaging reduces error (Soll, 1999). 

This paper focuses on how well people recognize what we call the averaging principle: When 

combining uncertain quantity estimates, the discrepancy between the average estimate and the truth can 

be no greater than the average discrepancy of the component estimates. To illustrate the principle 

intuitively, imagine two people forecasting the high temperature in Honolulu tomorrow, which turns out 

to be 73º. If they guess 60º and 70º, they miss by 13º and 3º degrees respectively, or 8º on average. The 

average guess, 65º, also misses by 8º. Here, the average estimate performs equally well as the average 

judge. Now imagine they guess 60º and 80º, so that the two estimates “bracket” the truth. In this instance, 

their guesses miss by 13º and 7º, or 10º on average. But the average guess of 70º misses by only 3º. 

Averaging outperforms the average individual (and, in this case, happens to outperform both individuals).  

 An important implication of the averaging principle is that, over multiple judgments, the mean 

absolute deviation (MAD) of averaging is less than the MAD of the average individual if there is at least 
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one instance of bracketing.1 We conceive of deviation from the truth (which we will shorten to “error”) as 

having two components: Systematic bias, which is defined as a signed constant for a given judge over a 

given set of judgments, and random error. As the actual rate of bracketing increases, so does the power of 

averaging. For example, two judges who have normally distributed random errors that are unbiased (i.e., 

mean-zero) and uncorrelated will bracket the truth 50% of the time. If the judges have approximately 

similar skill (that is, they have similar MADs), averaging will improve accuracy by about 29%. The 

bracketing rate will be lower than 50% if the two judges share a bias (e.g., across a set cities both judges 

tend to overestimate or underestimate the truth), or if they have positively correlated random errors (e.g., 

underestimating in winter and overestimating in summer), in which case averaging will improve accuracy 

by less than 29%. Analogously, opposing biases and negatively correlated random errors will result in 

bracketing rates greater than 50%, in which case averaging will improve accuracy by more than 29%. The 

critical conclusion is that, as long as there is any bracketing whatsoever, averaging must be more accurate 

than the average judge.   

Extensive research in the forecasting (Armstrong, 2001; Clemen, 1989), decision making (Ariely 

et al., 2000; Johnson, Budescu, & Wallsten, 2001; Wallsten, Budescu, Erev, & Diederich, 1997), and 

groups (Einhorn, Hogarth, & Klempner, 1977; Gigone & Hastie, 1997) literatures has confirmed that 

averaging is a powerful and robust way of reducing error in quantitative judgment. Similar conclusions 

have been reached for other aggregation mechanisms, such as simple majority rule (Hastie & Kameda, 

2005; Sorkin, West, & Robinson, 1998). Although applied statisticians originally treated averaging as a 

baseline against which to compare more sophisticated combination methods, the baseline proved 

surprisingly difficult to beat (Clemen & Winkler, 1986; Fildes & Makridakis, 1995). In an extensive 

review, Armstrong (2001) reanalyzed thirty studies conducted between 1960 and 2000. Across the 

studies, averaging improved forecast accuracy from 3.4% to 23.5% relative to the mean performance of 

the forecasts being averaged, with a mean improvement of 12.5% (see Surowiecki, 2004, for an engaging 

overview of the benefits of aggregation and when they can be realized). 

                                                 
1 The basic principle that averaging outperforms the average judge holds for any convex loss function. If 
squared deviation is used, for example, averaging is even more powerful because it outperforms the 
average individual even if both estimates err in the same direction. Averaging is less attractive for loss 
functions that are not convex everywhere, such as the log of the deviation. Even for such functions, 
however, averaging will perform well at high levels of bracketing. 
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 Averaging itself is not critical to improving judgments. Weights in rough proximity to whatever 

weights are analytically optimal yield similar levels of improvement (Dawes & Corrigan, 1974; von 

Winterfeldt & Edwards, 1986). For example, if the appropriate weighting scheme is .5/.5, using a .7/.3 

split will be nearly as accurate. However, empirical studies indicate that people frequently do not combine 

at all, but instead choose between estimates (Soll & Larrick, 2005). In one of our studies, participants first 

estimated salaries for graduates of 25 business schools. They were paid based on the MAD of their 

revised estimates after viewing the responses of another participant. Although participants reduced MAD 

by 10% with their intuitive revision strategies (see also Harvey & Fischer, 1997; Yaniv, 2004), they 

would have improved by 16% had they consistently averaged. Because participants used extreme 

weighting schemes of 1/0 or 0/1 about half the time (strategies we call “choosing”), they often missed out 

on the benefits of combination. 

Why People Misappreciate Averaging 

Although many factors may contribute to the misappreciation of averaging, we will focus on 

people’s inability to reason extensionally (Kahneman & Frederick, 2002; Kahneman & Tversky, 1983; 

Stanovich & West, 2000) and their tendency to rely instead on flawed inferential rules and aphorisms 

(Holland, Holyoak, Nisbett, & Thagard, 1986; Nisbett & Ross, 1980). Extensional reasoning involves 

partitioning events into subsets that are mutually exclusive and exhaustive, and then aggregating over 

these subsets to draw inferences (cf. Kahneman & Tversky, 1983). In the case of averaging, two judges 

can either bracket the truth or not.  When the estimates bracket, averaging performs better than the 

average judge; when the estimates do not bracket, averaging performs equally well as the average judge. 

Putting the two cases together, averaging can do no worse than the average judge, and will do better 

across a set of questions provided that there is at least one instance of bracketing. 

Where might people go wrong in this sequence? If they do attempt to reason extensionally, they 

may sample possible instances incompletely, especially if they rely on their own imagination (Fiedler, 

2000). Extensional reasoning in itself does not guarantee a correct answer. For example, a person may 

simulate an instance of no bracketing, stop searching, and falsely conclude that averaging will lead to an 

average level of accuracy. Alternatively, if a judge simulates an instance of bracketing and stops, the 

judge will be quite optimistic about the prospects of averaging. Indeed, in Experiment 3 we find that 
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while many people are pessimistic about averaging, some are overly optimistic, and this is linked to their 

beliefs about bracketing. 

It is also possible that, instead of generating possible instances to assess the effectiveness of 

averaging, people rely on the representativeness heuristic. One manifestation of this heuristic is that 

people tend to anticipate outcomes that are representaitive of the process that generates them. For 

example, given 20 rolls of a six-sided die with four green faces (G) and two red faces (R), the sequence 

RGRRR is more likely to appear somewhere in 20 rolls than will GRGRRR, because the former sequence 

is included in the latter. However, most people prefer to bet on the longer, less likely sequence (Tversky 

& Kahneman, 1983). An explanation for this result is that people assess the similarity of the outcome to 

what they expect from the underlying process (i.e., rolling a die with more green than red sides), and then 

substitute this judgment of similarity to form a judgment of probability (Kahneman & Frederick, 2002). 

A similar explanation might account for how people assess the performance of averaging quantity 

estimates. Average performance is more similar to the process of averaging than is accurate performance, 

both semantically, and in the sense that both involve computing an arithmetic mean. If people substitute 

this similarity judgment when they evaluate the performance of averaging, they will conclude that 

averaging leads to an average result. In the case of averaging the opinions of an expert and a novice, the 

representativeness heuristic would lead people to conclude that the expert’s performance will be dragged 

down and the novice’s will be lifted up. In the case of two novices, they would conclude that performance 

is locked in at this mediocre level. Such representativeness-based reasoning is captured in cultural 

aphorisms (Nisbett & Ross, 1980) such as “you can’t get something from nothing” or “gigo—garbage in, 

garbage out.” Other cultural rules may also compete with or substitute for extensional reasoning, which 

we return to in the introduction to Experiment 4.  

Despite such failures in extensional reasoning, better reasoning is facilitated when information 

environments are more transparent (Brase, 2002; Hoffrage, Lindsey, Hertwig, & Gigerenzer, 2000; Lewis 

& Keren, 1999; Nisbett, Krantz, Jepson, & Kunda, 1983). This suggests that averaging will be easier to 

appreciate when bracketing is easier to observe and encode. Consider two judges who are forecasting 

tomorrow’s high temperatures for ten U.S. cities. When the estimates of the two judges are observed 

simultaneously and with the true outcome, it will be apparent to an observer that the truth often does “lie 

in the middle.” In such an environment, people will also be sensitive to the bracketing rate between two 
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judges, predicting more benefit from averaging as the bracketing rate increases. In the absence of 

simultaneous observation, however, bracketing is essentially undetectable. If judge 1’s predictions for 

Chicago, St. Louis, and so on are observed with the truth, followed by judge 2’s predictions for the same 

cities, it will be difficult for an observer to remember specific predictions well enough to recognize 

bracketing. In this sequential observation environment, people must rely on imagining the space of 

possible instances or substitute other judgments to predict the effect of averaging. In such an 

environment, people may never realize that bracketing occurs, and they may never reach the insight that it 

matters. 

The failure to encode bracketing during sequential observation has one notable exception: 

Bracketing that arises from opposing biases will be transparent. If an observer sees that a judge tends to 

give temperature estimates that are systematically high (e.g., 5º above the truth over a series of estimates), 

the observer can encode the bias at the judge level. When a judge who is known to have a high bias is 

paired with a judge known to have a low bias, an observer can easily imagine the high rates of bracketing 

that will follow. Thus, we expect that averaging will be appreciated when two judges have opposing 

biases regardless of whether their judgments are observed sequentially or simultaneously.  

 Overview of Experiments 

This paper presents four experiments that examine people’s beliefs about the effect of averaging 

judgments on reducing error. Although many questions could be asked regarding people’s intuitions 

about aggregation, we wanted to test understanding of a single, fundamental principle: In the presence of 

bracketing, the average of individual judgments must be more accurate than the average individual judge. 

People often neglect more sophisticated, and arguably, more difficult aggregation principles (Gonzalez, 

1994; Soll, 1999). Is this basic principle in the lay repertoire for reasoning about aggregation?  

In the first three studies, three complementary methods were used to test whether misconceptions 

about averaging are robust to variations in stimuli, presentation format, and elicitation methods. The first 

experiment tested people’s understanding of the effect of averaging when presented with summary data 

about judges’ estimates. The second experiment investigated whether people could induce the benefits of 

averaging by observing judges’ estimates directly. The third experiment presented minimal numerical 

information to test for people’s conceptual understanding of the effects of averaging.  
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We expected that the averaging principle would be difficult to grasp (the dozen or so empirical 

papers on averaging between the 1920s and 1940s are a testament to this difficulty!) due to the challenges 

of extensional reasoning and the availability of competing, flawed inferential rules. We have argued, 

however, that the benefits of averaging are easier to recognize as the bracketing rate increases and as it 

becomes more transparent. In these studies, we either manipulated (Experiments 1 and 2) or measured 

(Experiment 3) the bracketing rate—that is, the relative frequency with which the estimates of two judges 

fall on opposite sides of the truth. Averaging is more effective to the extent that the bracketing rate is 

high. The bracketing rate itself becomes more transparent when judgments are observed simultaneously 

or when judges have opposing biases. We expected that increased transparency would facilitate 

recognition of the averaging principle. A final study (Experiment 4) tested the contribution of extensional 

reasoning ability and inferential rules to appreciation of the averaging principle.    

Experiment 1 

Do people hold the principle that averaging must outperform the average judge if there is some 

degree of bracketing? Experiment 1 tested this question by providing participants with performance 

summaries for two hypothetical judges. A difference in the accuracy of the judges was created by setting 

their MADs at different levels (approximately a 12% difference). The bracketing rate for the two judges 

was manipulated by varying their historical correlation in random error across three levels: Positive 

correlation (24% bracketing), weak negative correlation (58%), and strong negative correlation (90%). A 

fourth condition included judges with opposing biases (90% bracketing). We expected that people would 

increasingly recognize the effectiveness of averaging as the bracketing rate increased. However, we 

predicted that many participants would equate the accuracy of averaging judgments with the accuracy of 

the average individual judge. 

Method 

Participants. Participants were 145 masters of business administration (MBA) students enrolled 

in a statistics course at INSEAD. The population is mathematically sophisticated; the median score on the 

quantitative section of the GMAT was in the 94th percentile.  

 Materials. Participants read the following scenario:  

Ms. A and Ms. B are currency analysts at two banks. On the first of every month they 

have the task of forecasting the yen to dollar exchange rate for the following month. The banks 
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use these forecasts in deciding their currency positions. The two banks have decided to merge and 

now must decide how to make best use of Ms. A and Ms. B. To help with this decision, the new 

combined bank has analyzed the past forecasts of Ms. A and Ms. B for the fifty months prior to 

the merger. There is no evidence that the accuracy level for the forecasters has been changing 

over this period.  

The concept of mean absolute deviation (MAD) was explained, using specific illustrations, after 

which the MADs of Ms. A (4.7) and Ms. B (5.3) were presented.   

 Participants were told that the banks also tracked the frequency with which each forecaster over- 

or under-estimated the true exchange rate for the previous 50 months. Participants then saw one of the 

joint patterns of forecasters’ errors in Figure 1 presented as a 2-by-2 table. The bracketing rate increases 

across the four panels (24%, 58%, 90%, and 90%, respectively). Regardless of how errors are distributed, 

the presence of bracketing dictates that averaging must outperform the average judge in all cases. 

 The question that elicited the main dependent variable—participants’ estimates of the accuracy of 

the averaging strategy—was embedded in a larger set of questions. Participants were told “Bank officials 

are discussing the following strategies for best using Ms. A and Ms. B,”  

Strategy 1 Retain Ms. A as the dollar/euro forecaster, and reassign Ms. B. (Ms. A alone) 

Strategy 2 Use Ms. A’s forecast 60% of the time and Ms. B’s forecast 40% of the time. 

(Alternating) 

Strategy 3 Average the two forecasts, and use this average as the bank’s forecast. (Averaging) 

Strategy 4 Ask Ms. A and Ms. B how confident they are for each forecast. Use the one who is 

more confident. If they’re tied on confidence, go with Ms. A. (Confidence) 

Strategy 5 Have Ms. A and Ms. B sit down and discuss their opinions. Require them to agree on a 

single forecast. (Discussion) [Parenthetical labels were omitted in the stimuli.] 

Participants were told to assume that Ms. A and Ms. B would continue to perform at their historic 

levels of accuracy, and to estimate the MAD that the new bank would achieve in its forecasts for the next 

50 months if they used each strategy.  

Results and Discussion 

 Participants’ estimates for the averaging strategy were coded as no better than the average judge 

if their estimate was equal to 5 or greater and as better than both judges if their estimate was less than 4.7, 
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with the remaining estimates coded in an intermediate category (where 5 is the average of Ms. A’s and 

Ms. B’s MADs of 4.7 and 5.3.)  Across all conditions, 57% of participants expected that averaging would 

perform no better than the average judge. Of these, nearly all (95%) estimated that averaging would 

perform exactly equal to the average judge’s MAD of 5 (which was both the median and modal response).  

 As shown in Table 1, participants were less likely to misunderstand the effect of averaging as the 

bracketing rate increased across the four conditions (Kendall’s tau-b = -.17, p < .05, combining the two 

90% conditions). However, even when the bracketing rate was 90%, half the participants estimated that 

averaging would perform no better than the average judge.  

Participants’ mean estimates of the MADs for averaging showed a similar pattern as the 

proportions. As may be seen in Table 1, estimates declined as imputed values (our estimate of a “correct” 

response based on the assumption that the judges had normally-distributed errors)2 declined across the 

four conditions. However, in all four conditions, a significant proportion of participants gave estimates for 

averaging that were higher than the imputed value (proportions = .74, .87, .80, .86, ps < .01 by a binomial 

test). Thus, although participants were sensitive to conditions that made averaging more effective, they 

consistently underestimated the magnitude of the benefit.  

There was an interesting discrepancy between the mean and the median, which reveals a second 

pattern. Although 57% of the participants estimated that averaging would perform no better than the 

average judge, the 43% who estimated that it would perform better than the average judge expected it to 

perform substantially better. Of this 43% minority, 95% correctly expected averaging to outperform both 

judges in these circumstances. Surprisingly, almost no one gave an intermediate estimate between the 

average judge (5) and Ms. A (4.7). Taking all conditions together, a narrow majority failed to recognize 

the power of averaging, whereas a substantial minority recognized that in these cases averaging would 

surpass both judges.  

 Table 2 presents the medians for averaging and the other four strategies. In contrast to averaging, 

participants were substantially more accurate in predicting the consequence of alternating between Ms. A 

and Ms. B and of using Ms. A’s forecasts alone. A priori, the expected values of these two strategies are 

4.94 and 4.7 (in all conditions), which were precisely the median values that participants gave in all 
                                                 
2 To derive the imputed estimates, we first specified the bivariate normal distribution for the judgments of 
Ms. A and Ms. B that yields, in expectation, the cell frequencies in the 2x2s. It is then straightforward to 
compute the MAD for averaging. 
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conditions (see Table 2). It is worth noting that 80% and 100% of the participants estimated that 

alternating and using Ms. A’s forecast, respectively, would perform better than the average judge. These 

proportions stand in contrast to the 43% who believed that averaging would perform that well. Table 2 

also shows that the median participant estimated that the confidence and discussion strategies would 

outperform averaging.  

 The Table 2 results indicate that participants’ mistaken estimates for averaging were not the result 

of the lazy or careless use of “5” as a focal answer—for all other strategies, the median participant gave a 

number other than 5. In particular, the estimates for the alternating strategy indicate that participants 

processed information with effort and care since the correct response requires precise calculation. Many 

participants were not able, however, to predict the effect of averaging.   

 By presenting participants with summary data on individual accuracy and dyadic bracketing rates, 

Experiment 1 tested whether they held and could apply the abstract principle that averaging outperforms 

the average judge in the presence of bracketing. The results indicated that the majority of participants did 

not spontaneously reason using this abstract principle, and reasoned instead that averaging performs at the 

level of the average judge. Experiment 2 was designed to test whether the averaging principle could be 

applied more accurately with specific, concrete instances.  

Experiment 2 

Experiment 1 showed that, for summary data, most people failed to apply the abstract principle 

that averaging outperforms the average judge. As we proposed in the Introduction, we expected that 

people would engage in more accurate extensional reasoning if they could observe specific instances in 

which two judgments bracketed the truth. Experiment 2 tested whether people could induce the averaging 

principle from direct experience with sets of judgments that exhibited bracketing. 

 As we proposed in the Introduction, however, we expected that the ability to recognize the effect 

of averaging would depend on an important environmental variable: Are judges’ estimates observed 

together (as they were in summary form in Experiment 1) or in isolation? Environment is critical because 

bracketing—which gives averaging its power—is an inherently dyadic property. Social psychologists 

have argued that people tend to encode behavior in terms of stable properties of individuals but overlook 

situational variables (Ross & Nisbett, 1991). Bracketing is a situational variable that is nearly impossible 
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to recognize if observers are attending to individuals in isolation of each other. It is only apparent when 

multiple estimates of two judges can be compared to the truth simultaneously. 

 As in Experiment 1, we varied the rate of bracketing by creating a no correlation condition, a 

negative correlation condition, and an opposing biases condition. In addition, we included two formats in 

Experiment 2, one in which participants saw the estimates of two judges sequentially (10 guesses by one 

judge, followed by 10 guesses by a second judge), and one in which participants saw the estimates 

simultaneously. We expected that participants would recognize the benefits of averaging in the 

simultaneous format, where bracketing is transparent, and that they would be increasingly sensitive as 

bracketing increased (as in Experiment 1). However, in the sequential format, we expected that the non-

transparency of bracketing would lead participants both to misappreciate the effect of averaging 

(expecting averaging to perform no better than the average judge) and to be insensitive to bracketing rate 

(expecting averaging to perform the same when random errors are uncorrelated or negatively correlated).   

To the extent that people do attend to and encode behavior at an individual level (Ross & Nisbett, 

1991), we expected one special case in which averaging would be appreciated regardless of learning 

environment: The case of opposing biases. The tendency for a judge to err systematically high or low in a 

domain is easily encoded as a stable individual property (“he tends to underestimate attendance” or “she 

tends to be an optimist about sales”). Consequently, even when judges are observed in isolation, 

bracketing that is due to opposing biases is readily apparent (“an optimist and a pessimist will tend to 

offset each other’s excesses”). We therefore expected the effect of averaging opposing biases to be 

recognized regardless of whether judgments were observed sequentially or simultaneously.  

Method 

Participants. Participants were 263 MBA students enrolled in a statistics course at INSEAD, in a 

different cohort than those who participated in Experiment 1.  

 Materials. Participants were presented with a scenario about two managers, Ty and Chris, who 

co-manage a small movie theater. They were told: 

Every morning they predict the attendance at the theatre for that evening. They use the forecast to 

decide how many employees are needed to staff the theatre. If they underestimate the true 

attendance the theatre loses revenue, because many patrons decide not to wait in long lines for 

concessions. If they overestimate the attendance the theatre wastes money, because some 
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employees sit around with nothing to do. Overall the theatre is profitable. Nevertheless, Ty and 

Chris have calculated that the theatre loses €1 for every unit of attendance by which the forecast 

misses the correct answer, whether it’s an overestimate or an underestimate. On the following 

page are the forecasts that Ty and Chris made separately for the last ten days. The correct 

attendance levels are also given.  Study their forecasts carefully for a minute or two. Afterwards, 

we will ask you several questions about forecast accuracy. 

Participants then saw a list of forecasts for Ty and Chris accompanied by the true attendance 

level. In the sequential format, these lists of estimates appeared on separate pages. In the simultaneous 

format, these lists of estimates were columns in the same table. In all cases, daily forecasts were generated 

for Ty and Chris assuming normally distributed random errors, where Ty had a better MAD than did 

Chris. Two conditions were used, one in which the Ty was substantially more accurate than Chris (MADs 

of 31 and 47, respectively) and one in which Ty was somewhat more accurate than Chris (MADs of 34 

and 42). In all cases, averaging produced a MAD lower than both individuals’ MADs.  

Three bracketing rate conditions were created by varying the patterns of error: No correlation in 

random error (40% rate), negative correlation in random error (80% rate), and opposing biases (80% rate) 

with no correlation in random error. The actual stimuli for the three bracketing rates are shown in Figure 

2 (small difference in MAD, simultaneous format). Averaging led to more improvement in conditions 

with more bracketing. The overall design crossed format (2) by difference in MAD (2) by bracketing rate 

(3). (The MAD manipulation produced no main effects or interactions for the main dependent variable, 

and will not be considered further.) 

After studying the pattern of judgments, participants were told:  

In answering the questions below, please do not go back and re-examine the forecasts on the 

preceding pages. Rather, base your answers on the intuitive impressions you have already 

developed. In answering the questions, recall that the theatre loses €1 for every unit of attendance 

by which the forecast misses the correct answer, whether it’s an overestimate or an underestimate. 

 Participants were then asked to estimate the MAD for the following three strategies (two 

additional strategies were included as filler): 

 Strategy 1 If Ty’s estimate alone were always used, how much money would the theatre have lost 

per day on average? (Ty alone) 
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 Strategy 2 If Chris’s estimate alone were always used, how much money would the theatre have 

lost per day on average? (Chris alone) 

 Strategy 3 If the mean (that is, the midpoint) of Ty and Chris’ estimates were always used, how 

much money would the theatre have lost per day on average? (Averaging) 

Results and Discussion 

 For each participant, an average judge score (j) was calculated from their estimates for Ty alone 

and Chris alone. Participants’ estimates for the averaging strategy were coded as no better than the 

average judge if their estimate was equal to or greater than j.  

The rate at which participants mistakenly estimated that averaging would perform no better than 

the average judge varied systematically by condition (see Figure 3). As predicted, misappreciation of 

averaging was more likely in the sequential format than in the simultaneous format condition for the no 

correlation condition (proportions of .57 vs. .33, n = 87, p < .02, Fisher’s Exact test) and for the negative 

correlation condition (.60 vs. .15, n = 87, p < .001, Fisher’s Exact test). Also, as expected, 

misappreciation of averaging was rare for the opposing biases condition, and did not differ by format 

(sequential .21 vs. simultaneous .19, n = 89, ns). As in Experiment 1, participants were less likely to make 

the mistake in the negative correlation condition than in the no correlation condition, but only within the 

simultaneous format condition, where the degree of correlation was transparent (.15 vs. .33, n = 90, p < 

.03, Fisher’s Exact test). 3 As in Experiment 1, a large majority (90%) of those who believed that 

averaging would perform better than the average judge expected it to perform better than both judges. 

And, as in Experiment 1, a large majority (84%) of those who believed that averaging would perform no 

better than the average judge expected it to perform exactly equal to the average judge.  

 In sum, participants reasoned much less accurately about averaging in sequential formats—in 

which concrete instances of bracketing were never directly observed—than in simultaneous formats. This 

environment effect, however, did not hold for opposing biases, which could be encoded at the individual 

level even in the sequential format. Experiment 2 confirmed that specific learning environments 

                                                 
3 We also calculated the mean percentage improvement that participants expected from averaging 

(compared to j, the performance of the average judge). Expected improvement was large and sensitive to 
bracketing in the simultaneous format condition (Mno correlation = 23% versus Mnegative correlation = 43%); it was 
smaller and insensitive to bracketing in the sequential format condition (Mno correlation = 19% versus Mnegative 
correlation = 18%). Expected improvement from averaging was large for opposing biases in the simultaneous 
(M =  45%) and sequential (M = 50%) conditions.  
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(simultaneous formats) and forms of bracketing (opposing biases) helped people reason extensionally 

about averaging. In the General Discussion, we consider whether these helpful circumstances are 

common. 

Experiment 3 

The first two experiments have shown that people commonly assume that averaging performs no 

better than the average judge and that certain factors, such as transparency and degree of bracketing, 

reduce this misperception. Both experiments, however, relied heavily on numerical information and 

required numerical responses. To the extent that calculation is difficult or distracting, it may lead to 

greater reliance on heuristic processing. In addition, numerical responses may invite a form of reasoning 

by representativeness (Kahneman & Tversky, 1983) in which people equate the performance of averaging 

with the performance of the average judge. Although these mechanisms are real sources of 

misappreciating averaging, the effect may be of less interest if it depends exclusively on these 

mechanisms. Experiment 3 was designed to minimize numerical information in order to test people’s 

conceptual understanding of averaging. To do so, the two “component” judges were described as being 

equally close to the truth in their forecasts. Participants were then asked to judge whether, over a series of 

judgments, “midpoint” estimates would be closer to the truth, further, or the same distance as both judges. 

Given some amount of bracketing, the midpoint strategy must be more accurate than both individual 

judges. This design reduced the use of numerical information in the stimuli and no longer asked 

participants to give a quantitative estimate of the effect of averaging. 

Also, unlike the first two experiments, Experiment 3 elicited assumptions about bracketing rather 

than manipulating bracketing. Perhaps part of people’s difficulty in recognizing the benefits of averaging 

is that they do not attend to external information about bracketing, but are nevertheless sensitive to their 

own assumptions. This allowed us to measure people’s spontaneous assumptions about bracketing in the 

absence of external information and to test how they used it in their own reasoning. Also, by 

counterbalancing when bracketing rate was elicited, we could test whether directing participants’ 

attention to bracketing prior to evaluating averaging might enhance their understanding of its beneficial 

effects on accuracy. 

 As we found in Experiments 1 and 2, we expected that people would often incorrectly predict 

that averaging judgments would be no more accurate than the average judge. However, as in the previous 
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experiments, we also expected that estimates would be more accurate as bracketing rate—in this case, 

imagined rates—increased.   

Method   

Participants. One hundred forty-nine participants (89% students, mean age = 22.4) were recruited 

at the Sorbonne in Paris to participate at the INSEAD Social Science Research Center. In exchange for 

participating in two short studies (about 15 minutes total), participants received a coupon for food at a 

nearby cafe worth €2.20. The present study was always completed first. 

Materials and Procedure. Participants read the following scenario in French:   

Carl, Guy, and Pierre work at an art auction. They have a game that they play amongst 

themselves. Every time a painting is auctioned off, they each guess the selling price of the painting. Carl 

and Guy are equally good at guessing prices; sometimes Carl is closer and sometimes Guy is closer, but 

neither has a definitive advantage. Pierre always gets to guess last. He is trying out a new strategy, which 

is to always guess the midpoint between Carl's guess and Guy's guess. For example, if Carl guesses 

€1,000 and Guy guesses €1,400, Pierre would guess €1,200.  

 Participants’ assumptions about bracketing were elicited with the following question: 

“Suppose that the game is played for 100 paintings. For how many paintings would you expect 

the true selling price to be in between the guesses of Carl and Guy?  (For example, suppose that 

the guesses of Carl and Guy are €300 and €500. If the selling price is greater than €300 and less 

than €500, then it is in between. Otherwise, it is not in between).” Participants then estimated the 

number of 100 paintings for which the truth would fall in between and not in between Carl and 

Guy’s guesses.    

Participants’ predictions about the effect of averaging were measured using a multiple 

choice format: “Compare Carl, Guy, and Pierre. Whose guesses will be closer on average to the 

true selling price (circle one)? 

(a) Carl and Guy will be equally close. Both will be closer than Pierre, on average. 

(b) Carl and Guy will be equally close. Pierre will be closer than both of them, on average. 

(c) Carl, Guy, and Pierre will be equally close, on average. 

(d) Carl and Pierre will be equally close. Both will be closer than Guy, on average.” 
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 The four options were varied in a Latin square design. There was no effect of order on response 

choice.  

The order in which participants answered the bracketing rate question and strategy question was 

counterbalanced (bracketing first vs. bracketing second). This allowed us to test whether thinking about 

bracketing prior to evaluating strategies improved understanding of averaging.   

Results and Discussion 

 Participants estimated that the guesses of the component judges, Carl and Guy, would bracket the 

truth on 61% of trials, a rate that did not vary by question order (Mbracketing first = 59% vs. Mbracketing second = 

62%, ns). Notably, all participants expected some bracketing.  

Fifty percent of participants believed that averaging would be more accurate than both component 

judges, 32% believed it would be equal to both, and 13% believed it would be worse than both. The 

remaining participants chose option d above, which does not have a clear interpretation. This pattern did 

not differ by question order (bracketing first = 47%, 34%, 16% vs. bracketing second = 53%, 31%, 10%, 

respectively, ns). The modal participant correctly expected the midpoint strategy to perform better than 

the component judges. However, the basic proportion of participants who misunderstood the effect of 

averaging remained similar to those in Experiments 1 and 2: 45% of participants expected averaging to 

perform equal to (response c) or worse than (response a) the average judge.   

Participants were sensitive to (or coherent with) their assumptions about bracketing rate. 

Participants who assumed a lower rate of bracketing were more likely to predict that averaging would 

perform no better than the average judge (Kendall’s tau-b = -.28, p < .001), and this held for both question 

orders (Bracketing first Kendall’s tau-b =  -.22, p < .02, and Bracketing second Kendall’s tau-b =  -.35, p 

< .001). Figure 4 displays this relationship by grouping participants into four roughly equal categories 

based on their bracketing rate assumptions (the modal 50% response could not be divided). As may be 

seen, a majority of participants expected bracketing to be 50% or less, of which a majority incorrectly 

expected averaging to perform no better than the average judge. However, a substantial minority expected 

bracketing rates to be higher than 50%, of which a large majority correctly predicted the effect of 

averaging.   

Experiment 3 minimized numerical information and numerical responses to isolate people’s 

conceptual understanding of averaging. The modal respondent correctly predicted the effect of averaging, 
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although a similar proportion to Experiments 1 and 2 incorrectly predicted that averaging would perform 

no better than the average judge. The change in method did not produce qualitatively different 

conclusions from the previous designs. Participants also reasoned in accord with their assumptions about 

bracketing rates: The higher their assumed bracketing rate, the more likely they were to predict that 

averaging would perform better than the average judge.  

It is interesting to note two points about participants’ bracketing rate assumptions. First, 82% of 

participants assumed bracketing rates of 50% or higher, and over 25% assumed bracketing rates of 75% 

or higher. Judges would tend to bracket the truth 50% of the time if they were unbiased and had 

uncorrelated random error, and would consistently bracket at a higher rate only if they had opposing 

biases, negatively correlated random errors, or both. In reality, because judges do share biases and have 

positively correlated random error in many judgment domains, 40% is at the high end of the range of 

empirically-observed bracketing rates. For example, Soll and Larrick (2005) observed mean bracketing 

rates between 20% and 43% across a variety of judgment tasks. A second point to note is that, because 

Experiment 3 measured but did not manipulate bracketing rates, it essentially identified “aggregation 

optimists” (who assumed both high bracketing and high benefits of averaging) and “aggregation 

pessimists” (who assumed ordinary bracketing and less benefit from averaging). This suggests the 

possibility that some people exhibit a compensatory bias: When bracketing is unobserved, a subset of 

people may assume an extreme but uncommon rate of bracketing. For such a group, receiving feedback 

on representative bracketing rates could have the ironic effect of discouraging their enthusiasm for 

averaging. We return to the reasoning of “aggregation optimists” in the General Discussion. 

Overall, participants in Experiment 3 were somewhat more accurate about the consequences of 

averaging than were participants in the previous experiments. The improvement in performance may have 

been due to the change in population, in method, or both. In a follow-up study using a different sample 

from the same Sorbonne student population (n = 64), we presented participants with the Carl-Guy 

scenario followed by a 7-point response scale (Pierre will be … 1 = much less accurate than Carl and 

Guy, 4 = equally accurate to Carl and Guy, 7 = much more accurate than Carl and Guy) in place of the 

multiple-choice options in Experiment 3. On this scale, the mean response was 4.44, which was higher 

than the midpoint of 4 (t(63) = 1.965, p =.055). However, the median response was 4, with 14 participants 

predicting that averaging would be less accurate than the average judge, 21 predicting it would be the 
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same, and 29 predicting it would be more accurate. Thus, as in Experiments 1 and 2, a narrow majority 

(55%) misunderstood the effects of averaging and a large minority (45%) had an accurate view.4 All told, 

these results suggest that the student populations used in these studies did not reason reliably better (or 

worse) than the MBA samples used in Experiments 1 and 2. 

We have observed in other research (Soll & Larrick, 2005) that people frequently do not average 

when revising their own judgments, but choose to stay with their initial estimate, and we have proposed 

that misappreciation of averaging is one reason for the “choosing” strategy. To examine this point, the 

follow-up study included a second task in which participants estimated the number of marbles in a bottle, 

silently exchanged estimates with a partner, and then provided a final estimate that was rewarded for 

accuracy. Participants’ beliefs about the benefits of averaging in the Carl and Guy scenario (measured on 

the 7-point scale) were positively related to the likelihood that they changed their initial marble estimates 

after seeing their partner’s judgment (Kendall’s tau-b = .245, p < .03). Of those participants who believed 

that averaging outperforms the average judge (gave a response of 5 or above in the Carl and Guy 

scenario), 59% revised their initial marble estimate toward their advisor, compared to 34% of the 

remaining participants.  

Experiments 1 through 3 demonstrated that people often believe that averaging the estimates of 

two judges is no more accurate than the response of the average judge. They also demonstrated that the 

propensity to make this reasoning mistake was diminished when bracketing was common and made 

transparent, thereby facilitating correct extensional reasoning. In the introduction, we suggested that 

failure to recognize the benefits of averaging were due to failures in extensional reasoning and to flawed 

inferential rules. Experiment 4 was designed to test the influence of these sources directly. 

Experiment 4 

 Experiments 1 through 3 investigated an environmental factor—the transparency of bracketing—

that made it is easier to reason correctly about the effect of the averaging. What, however, underlies the 

basic failure to understand averaging? In the introduction, we proposed that people may have difficulty 

reasoning extensionally and may therefore substitute flawed inferential rules to predict the effect of 

                                                 
4 Mean estimated bracketing rate was 58.9%. Higher bracketing estimates were once again related to more 
accurate beliefs about the benefit of averaging (as measured on the full 7-point scale) (Kendall’s tau-b = 
.22, p < .03). 
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averaging. Experiment 4 was designed to assess the joint contribution of extensional reasoning ability and 

flawed-inferential rules measured at the level of the individual judge. 

 The benefits of averaging may be appreciated at a deep level by careful extensional reasoning—

by imagining the space of possible outcomes and their implications. There is evidence, however, that not 

all people are equal in their ability to reason extensionally (Stanovich & West, 2000). In an influential 

collection of studies, Stanovich and West found reliable individual differences in people’s ability to make 

normative decisions across a wide range of problem domains. Following Stanovich and West, we 

measured individual differences in extensional reasoning ability by testing performance on two reasoning 

problems that are unrelated to our domain. We expected to find that performance on these unrelated 

problems would predict success at understanding the effect of averaging. 

We have argued that in place of extensional reasoning, people may rely instead on flawed 

inferential rules and aphorisms that are acquired from the larger culture (Fiske, Kitayama, Markus, & 

Nisbett, 1998; Nisbett & Ross, 1980) or induced through experience (Hogarth, 2001; Holland et al., 

1986). For example, research on cross-cultural differences has found that members of individualistic 

countries are more likely than those in collectivistic countries to endorse the statement, “Decisions made 

by individuals are usually of higher quality than decisions made by groups” (Hofstede, 1984, p. 160). 

Similar differences in individualism and collectivism occur at the individual level within countries 

(Oyserman, Coon, & Kemmelmeier, 2002; Singelis, 1994; Triandis, 1995). We suspect that individualists 

understand group decisions differently than do collectivists. When different individuals hold conflicting 

opinions in a group, individualists attempt to identify the most able person and choose his or her 

judgments, which we have termed “chasing the expert” (Soll & Larrick, 2005; see also Surowiecki, 

2004).The individualist’s fear is that pristine individual judgment will be influenced and distorted by the 

group’s response; conforming to others by compromising or “splitting the difference” is seen as 

abdicating the truth (Nisbett et al., 2002).5 As one popular group decision making textbook (Fisher & 

Ellis, 1990, p. 276) instructs, “Compromise should be considered a last-resort measure…. [E]verybody 

                                                 
5 Suspicion of group influence on individuals is clearly illustrated in the social psychology studies of the 
1950s and 1960s, which focused on how conformity to group norms leads to “the loss of individuality, 
restriction of creativity, and reduction of all group members to the level of mediocrity” (Shaw, 1976). 
Vernon Allen (1965, pp. 135-136) summed up the assumptions of this research by observing that 
“conformity has captured the interest of social psychologists and laymen alike and has been thoroughly 
censured by both.”  
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loses something.” This is sound advice in some contexts, such as multiple-issue negotiations (Raiffa, 

1982), but it does not generalize to combining estimates. By contrast, collectivists may be more willing to 

value compromise and to yield to it (Nisbett et al., 2002). 

Although culture may provide basic beliefs, such as “compromise leads to mediocrity,” there are 

often aphorisms suggesting the opposite conclusion, such as “the truth lies in the middle.” Which rules 

will people hold and use? Culture is one determinant. Another determinant may be a person’s statistical 

sophistication. Finally, experience in the right environment may provide the opportunity to induce correct 

rules (Hogarth, 2001; Holland et al., 1986). Regardless of why people favor one aphorism over another, 

we expect that people who endorse aphorisms that support compromise are more likely to predict that 

averaging will be beneficial (which is distinct from understanding why it is beneficial).  

 Overview of specific measures. We measured extensional reasoning ability by testing 

performance on two reasoning problems that are formally unrelated to combining opinions: The Will 

Rogers effect (Messick & Asuncion, 1993) and Simpson’s paradox (Simpson, 1951).The Will Rogers 

effect (WRE) is named after the famous humorist who observed that the migration of Oklahomans to 

California during the Great Depression raised the average intelligence of both states. Our WRE item 

(Question 2 in the Appendix) asked about the possible effects of moving a group of employees from one 

department in a company to another department. One combination (2b) stated “The percentage of men in 

Department A increases and, at the same time, the percentage of men in Department B increases.” 

Although the correct extensional analysis shows that this combination is logically possible, many people 

consider it impossible. They incorrectly expect that changes in the partitions (departments) must move in 

opposite directions to match the unchanging proportion in the population (company).  

 Simpson’s paradox (SP) occurs when a relationship between two variables reverses once data are 

conditioned on a third (confounding) variable. Our SP question (Question 3 in the Appendix) asked about 

the average salary of women when men had higher salaries within the two departments making up a 

company. One combination (3b) stated “In the company as a whole, the average salary of the women is 

higher than the average salary of the men.” Although the correct extensional analysis shows that this 

combination is logically possible, many people consider it impossible (for other examples, see Curley & 

Browne, 2001; Fiedler, 2000). Once again, they incorrectly expect that properties of partitions 

(departments) must match properties of the population (company).  
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To assess inferential rules, we asked participants to evaluate two cultural aphorisms that favor 

averaging (e.g., “the truth lies in the middle”) and two that did not (e.g., “compromise leads to 

mediocrity”). To measure reasoning about averaging, we asked participants to judge different 

hypothetical outcomes of averaging (see Appendix, Questions 1 and 4). We expected that both the ability 

to reason extensionally and endorsement of pro-averaging aphorisms would be positively related to 

correct inferences about averaging. We also wanted to test whether the two predictors interacted—did 

they compensate for each other? Were they jointly necessary? Although cultural aphorisms tend to point 

to a general conclusion about averaging as good or bad, they are otherwise imprecise. We expected that 

reasoning by aphorisms would not be as accurate as applying a full extensional analysis.  

Method 

Participants. Participants were 60 students at Duke University who were paid $6 for taking part 

in a 20-minute study.  

Materials and procedure. Participants read a scenario about a student group who ran a university 

film series. They were told that one of the group’s tasks was to meet and to forecast attendance for 

different films they were considering showing. Participants read:  

The actual attendance at the film series varies between 50 and 250 depending on the popularity of 

the specific movie. Historically, the five members of the group have varied in how accurate their 

predictions are. No member of the group makes perfect predictions—that is, each member 

sometimes guesses too high and sometimes too low. However, some members are more accurate 

than others. The group measures accuracy in terms of absolute difference from the truth; they 

only care about deviation from the truth, not whether it is high or low. Thus, if the true attendance 

is 120, then someone who guesses 110 misses by 10, someone who guesses 130 misses by 10, 

and they are equally inaccurate. Over the last 50 movies, the most accurate member of the group, 

Tracy, has misestimated the actual attendance by 20 people on average (sometimes high, 

sometimes low). By comparison, the least accurate member, Kelly, has misestimated the actual 

attendance by 30 people on average (sometimes high, sometimes low). The other members of the 

committee are less accurate than Tracy but more accurate than Kelly. 

Participants were then asked to think about how the different forecasts from each member of the 

group might be used. This was followed by the question, “Think about the “Forecasting Committee” 
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described above. In your opinion, how true is each of the following sayings in this situation?” Each 

saying was rated on a separate 1 to 7 scale, with the endpoints not at all true and very true. The sayings 

were a) “Two heads are better than one,” b) “True expertise is knowing when to defer to an expert,” c) 

“The truth lies in the middle,” and d) “Compromise leads to mediocrity.”  

Next, participants answered the questions that appear in the Appendix. Two questions were 

designed to measure extensional reasoning about the effect of averaging on absolute deviation (Question 

1 regarding a single judgment and Question 4 regarding multiple judgments (MAD)) and two were 

designed to measure extensional reasoning in other domains (Question 2 on WRE and Question 3 on SP). 

The specific instructions for these questions were, “For each of the scenarios below, tell us whether you 

think that the scenario is possible (i.e., it could be true under some circumstances) or impossible (i.e., it 

could never be true). Please try to be as accurate as possible in your answers.” The order of questions was 

counterbalanced and had no effect on the results.  

Results and Discussion  

 The aphorism questions correlated reasonably well with each other (average r = .33 after reverse 

coding items b and d) and were averaged to create an aphorisms score for each participant. High scores on 

the aphorisms measure reflected a general endorsement of the benefits of aggregation. The average 

participant had a score near the midpoint on this scale (M = 4.30, sd = 1.19). The number of correct 

responses to Question 2 (WRE, four parts) and Question 3 (SP, two parts) were converted to a proportion 

correct to create an extensional reasoning measure (M = .68, sd = .16). The aphorisms measure was 

positively correlated with the extensional reasoning measure (r = .26, p < .05), suggesting that general 

faith in averaging could be partly a product of extensional reasoning ability (with the caveat of 

interpreting a correlation causally). Finally, the number of correct responses to Questions 1 and 4 (3 parts 

each) were converted to a proportion correct for each participant to create an averaging opinions measure 

(M = .80, sd = .20). This measure served as the dependent variable. The averaging opinions measure was 

significantly correlated with the aphorisms measure (r = .25, p = .05) but not with the extensional 

reasoning measure (r = .21, p = .11) (see also Equations 1 and 2 in Table 3).  

 To test how the aphorisms measure and extensional reasoning measure jointly predicted the 

averaging opinions measure, we regressed the averaging opinions measure on both predictors and an 

interaction term. To minimize collinearity between the predictors and the interaction term, we mean-
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centered the measures by converting them to z-scores before taking their product. As desired, the resulting 

interaction term was not significantly correlated with either predictor (with aphorisms, r = .07, ns; with 

extensional reasoning, r = .16, ns). Four regression equations are reported in Table 3. 6 The full model 

(Equation 4) revealed a significant interaction. To illustrate this interaction, we performed a median split 

on the aphorisms and extensional reasoning measures, and found that participants who were above the 

median on both predictors had a mean score of .91 on the averaging opinions measure. The remaining 

participants performed worse. Those who were below the median on both had a mean score of .76 and 

those who were above on one but not on the other had a mean score of .74 (high extensional, low 

aphorism) and .77 (high aphorism, low extensional). These data suggest that, to reason accurately about 

the averaging principle, people need both faith in the benefits of aggregation and the ability to think 

extensionally about possible outcomes. 

 We performed additional analyses to shed light on what people are thinking when they 

misappreciate the effects of averaging. First, the averaging opinions questions (Questions 1 and 4) can 

reveal at a more fine-grained level the specific mistakes people make. Consider Question 4, where 

participants universally answered part b correctly and 28 of 60 participants answered all parts correctly. 

The remaining erroneous responses to parts a and c can be used to distinguish between different types of 

reasoning mistakes. Eight people responded that both a and c were impossible, implying that averaging 

can lead to only average performance. Six people responded that a was impossible—averaging can 

perform no better than the average. And eighteen responded that nothing was impossible—averaging can 

perform better or worse than average. As these results show, the majority of those who misappreciated 

averaging in Experiment 4 believed that everything was possible—good, bad, and no change. This 

suggests that, in Experiments 1 through 3, participants who equated averaging with the performance of 

the average judge were often reporting an expected value in a subjective distribution of outcomes.  

A final analysis of the averaging opinions questions (Questions 1 and 4) revealed that people 

performed similarly across the two questions. The accuracy score on one question was highly correlated 

                                                 
6 The resulting coefficients show how a standard deviation change in a predictor affects proportion 
correct. Given that the dependent variable had only five levels, the OLS regression was repeated as a 
multinomial logistic regression. This analysis yielded stronger significance levels: The fourth model was 
significant at p < .01 and the interaction at p < .005. The main effects remained nonsignificant. Because 
the qualitative results were unaffected, we report the OLS results for ease of interpretation.  
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with the score on the other (r = .63, p < .001). This pattern suggests reliable individual differences in the 

tendency to appreciate (or misappreciate) averaging.  

General Discussion 

 Under a range of conditions, a majority of people erroneously believed that averaging the 

estimates of two judges would perform no better than the average judge. Performance at the level of the 

average judge is the worst possible outcome for averaging, and occurs only when judges never bracket the 

truth. Because the judges in our stimuli bracketed the truth between 24% and 90% of the time, averaging 

was always superior to the average judge (and, in these cases, superior to both judges). Across a range of 

methods and tasks, a subset of people—in many cases a majority—did not reason with this most basic 

principle of aggregation.   

Although participants frequently mispredicted that averaging would perform no better than the 

average judge, factors that facilitated extensional reasoning greatly mitigated this mistake: Participants 

reasoned more accurately when the bracketing rate was high and when bracketing was made transparent 

(either through observing judges simultaneously or through the ease of recognizing opposing biases).  

Unfortunately, there are reasons to believe that many of the facilitating conditions we identified 

might be uncommon in daily life. First, in many cases only summary statistics on accuracy are available. 

For example, individual investors rarely track the performance of multiple stock analysts on a stock-by-

stock basis. Rather, investment services provide records for multiple analysts, showing how well 

investors would have performed had they followed the advice of each. Information that might help people 

see the benefit of averaging, such as inter-analyst error correlations or bracketing rates, are typically not 

provided. Second, even when estimates of multiple judges are presented simultaneously, they may not be 

presented with the truth. For example, in the days leading up to a football Sunday, many newspapers 

publish sportswriters’ predictions of victory margins (e.g., Packers by 4). However, after the games have 

been played, they do not publish charts showing all forecasters’ predictions together with the game 

outcomes. If they did, instances of bracketing might “leap out” of the data as in Experiment 2, making the 

power of averaging more salient. Instead, newspapers often summarize the accuracy of each sportswriter 

at season’s end. Life abounds with data on individual accuracy and error but rarely reveals interpersonal 

patterns of error that make bracketing transparent.  



25 

One circumstance in which participants did recognize the benefits of averaging was when judges 

exhibited opposing biases, which may be a fairly common event. For example, a dieter may learn that the 

bathroom scale tends to overestimate weight and the bedroom scale tends to underestimate. We might 

expect the dieter to start averaging the two values. However, biases may not always be obvious. Ten Wall 

Street investment firms, including Citigroup and Merrill Lynch, recently agreed to pay a combined 

penalty of nearly $1 billion to settle a lawsuit charging that stock analysts’ forecasts have been overly 

optimistic for many years (White, 2002). Apparently a small systematic bias can easily persist undetected 

by average investors, even in a data-rich, heavily scrutinized environment. 

How might reasoning about averaging be improved? We believe that with repeated exposure to 

instances of bracketing, judges can induce the general rule that averaging will perform better than the 

average judge. (Clear evidence that judges have generalized the rule would include their applying it to 

new problems when bracketing is unobservable.) Substantially more training would be needed, however, 

to help people gain a deep understanding of the parameters that determine the degree of benefit from 

averaging. Averaging will not always surpass the performance of both judges, such as when bracketing 

rates are low or when the judges differ greatly in accuracy (Soll & Larrick, 2005). Training people to 

understand how correlated random error, shared bias, and differences in accuracy jointly determine the 

performance of averaging relative to the better judge is a more daunting task. This inference, however, is 

the critical one that determines whether one should average judgments in a pair or choose the more expert 

judge (Soll & Larrick, 2005). 

The distinction between a general belief in the benefits of averaging and a deep, extensional 

understanding of averaging is useful for analyzing the steady minority of our participants who believed 

that averaging would outperform both judges. This group is not likely to be homogeneous. Some are 

likely to be sophisticated extensional reasoners about averaging. Others, however, may be “aggregation 

optimists” who believe in the benefits of averaging as an article of faith. 7 This second group may have 

too much faith if they assume that bracketing rates are routinely around 75% (as seen in Experiment 3) or 

that averaging always performs better than both judges in a pair. Consequently, they may elect to average 

judgments in situations when choosing the estimates of a single expert would be more accurate.  
                                                 
7 We do not mean to imply that optimism is a personality difference, but simply a difference in 
assumptions that individuals make on a given aggregation task. An interesting question is whether there 
are stable differences in the assumptions that people hold and evoke for aggregation tasks. 
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Future research should explore the connection between beliefs about averaging and the strategies 

judges apply when using advice to revise their estimates. As demonstrated in the follow-up study to 

Experiment 3, participants who are more optimistic about averaging are more likely to revise their 

estimates in the direction of advice. Their willingness to use advice may reflect an understanding of 

averaging, or it may reflect other factors, such as risk aversion (Soll & Larrick, 2005) or the availability 

of new reasons (Yaniv & Kleinberger, 2000).   

We opened our paper by describing an old debate on why groups produced more accurate 

judgments than individuals, in which intangible group qualities (the “Creative Plus”) were contrasted with 

statistical explanations. We close with a similar, contemporary issue. Quantitative group exercises are 

routinely run in MBA classes in which the accuracy of final group judgments, arrived at through 

discussion and debate, is contrasted with the accuracy of the average individual’s initial judgments. The 

improvement in performance is frequently offered as clear evidence of the power of discussion and debate 

in groups. However, if the group is doing anything resembling averaging and there is any bracketing, it is 

a statistical necessity that final group judgments will be superior to average individual judgments. 

Without belaboring the point, the average individual is an uninformative benchmark for this type of task. 

The more informative benchmark is whether the group’s answers can outperform the strategy of simply 

averaging initial individual estimates. Empirically, interacting groups tend to perform at the level of 

mechanical averaging (Hastie, 1986), presumably because normative and informational influence 

(Deutsch & Gerard, 1955) lead to compromise behavior.  

The fact that groups perform at the level of averaging suggests the radical prescription that groups 

might wish to forego discussion and simply average their private quantitative judgments, both for 

efficiency reasons and to preserve independence in judgment. When we propose this strategy to our 

students, however, they resist it (cf. Kleinmuntz, 1990). Partly they argue that there are benefits from 

group discussion that are not realized from mechanical combination, including building cohesion, 

commitment to the decision, and institutional memory. But they also argue that averaging leads to 

mediocrity and that they need discussion to identify who is the true expert. We have had hundreds of 

students take part in quantitative group judgment tasks, and the overwhelming majority has (privately) 

predicted that their group answers would be more accurate than averaging initial individual judgments. 

True to the results in the literature (Hastie, 1986), however, half the groups fall short of this benchmark. 
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The preference for discussion over averaging is not in itself harmful, because there are social benefits that 

offset the time costs. The real danger is that groups reduce the accuracy of their judgments in this type of 

task when they “chase the expert” and fail to appreciate—and capture—the benefits of compromise.  

Conclusion 

Averaging is a powerful way to reduce error across many settings: Combining the opinions of 

experts (Clemen, 1989; Hogarth, 1978), integrating the judgments of group members (Einhorn et al., 

1977; Gigone & Hastie, 1997), and revising one’s own opinion (Soll & Larrick, 2005). Yet people often 

do not take advantage of the benefits of averaging. We believe that these studies identify one of the major 

reasons people fail to exploit averaging—many hold an incorrect theory about the effect of averaging, 

believing that it equals average performance. This erroneous belief, in combination with overconfidence 

in the ability to identify more expert judges, leads people to focus on finding the perceived expert and to 

rely on that expert’s judgment. The failure to combine judgments comes at a high price in many common 

social and organizational settings. 
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Table 1.Estimates of the Effectiveness of Averaging Judgments by Dyadic Error Pattern (Expt. 1) 
__________________________________________________________________________________ 
 
 Proportion Estimating that  
 Averaging Performs… MAD Estimates 
 ___________________________ ___________________________ 
 
 No Better  Better than 
Error Pattern than the Both  
(Bracketing Rate) Avg. Judge Judges Median Mean Imputed n 
___________________________________________________________________________________ 
 
Positive r (24%) .74 .26 5.00 4.82 4.63 35 
Weak Neg. r (58%) .55 .40 5.00 4.35 3.06 38 
Strong Neg. r (90%) .47 .53 3.77 3.09 0.85 30 
Opposing Bias (90%) .53 .45 5.00 3.53 0.97 42 
___________________________________________________________________________________ 
Note. Bracketing rate for each condition is given in parentheses. The proportions in columns 1 and 2 do 
not sum to 1.0; the difference is the proportion of participants giving estimates that fell in the category 
“Better than the Average Judge but Worse than Ms. A.”  The imputed value is an estimate of the correct 
answer based on the assumptions described in footnote 2. 
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Table 2. Median Estimates for Five Combination Strategies (Expt. 1) 

_______________________________________________________________________________ 
 
 Strategy 
 ________________________________________________________ 
Pattern 
Of Error  Alternating Ms. A  Most   
(Br. Rate) Averaging 60/40 Alone Confident Discussion
_______________________________________________________________________________ 
 
Strong Pos. r (24%) 5.00 4.94 4.70 4.70 4.90 
Weak Neg. r (58%) 5.00 4.94 4.70 4.80 4.70 
Strong Neg. r (90%) 3.77 4.94 4.70 4.00 5.00 
Opposing Bias (90%) 5.00 4.94 4.70 4.50 4.85 
Overall 5.00 4.94 4.70 4.70 4.92 
_______________________________________________________________________________ 
 
 
 
 
 
Table 3. Regression Predicting Reasoning about Averaging Opinions (Proportion Correct) from the 
Aphorisms Measure and the Extensional Reasoning Measure (Expt. 4) 
________________________________________________________________________ 
 
Predictor Eq. 1 Eq. 2 Eq. 3 Eq. 4  
________________________________________________________________________ 
 
Constant .80*  .80* .80* .79* 
Aphorisms Measure .05*  .04 .04 
Extensional Reasoning Measure  .04 .03 .02 
Interaction    .05* 
 
Adjusted R2 .05* .03 .05 .11* 
________________________________________________________________________ 
 
Note. The aphorisms and extensional reasoning measures were standardized. The interaction term is the 
product of the aphorisms measure and the extensional reasoning measure. The coefficients describe how a 
one standard deviation change in a predictor variable affects proportion correct. All standard errors were 
.025. * p < .05, two-tailed. 
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Figure 1. Four conditions of error patterns between Ms. A and Ms. B in Experiment 1. Participants saw 
error patterns for only one condition.  
 
  Ms. B 

Relationship Ms. A Overestimate Underestimate 
Overestimate 18 4 Strong Positive 

Correlation Condition Underestimate 8 20 
   

Overestimate 10 13 Weak Negative 
Correlation Condition Underestimate 16 11 

   
Overestimate 3 23 Strong Negative 

Correlation Condition Underestimate 22 2 
   

Overestimate 2 41 Opposing Biases 
Condition Underestimate 4 3 

 
 
 
 
Figure 2. Stimuli used in the different error conditions in Experiment 2 (depicted here as in the 
simultaneous format condition). Participants saw data (Day, True Attendance, and Forecasts) for only one 
condition. 
 

  No Correlation Condition 
(Bracketing Rate = 40%)  

Negative Correlation 
Condition (Bracketing 

Rate = 80%) 
 

Opposing Biases 
Condition (Bracketing 

Rate = 80%) 

 
Day 

True 
Attend-

ance 

Ty’s 
Forecast 

Chris’s 
Forecast  Ty’s 

Forecast 
Chris’s 
Forecast  Ty’s 

Forecast 
Chris’s 
Forecast 

1 285 240 230  300 280  260 310 
2 315 390 320  310 335  265 350 
3 424 440 405  375 480  390 410 
4 254 225 245  225 290  265 300 
5 176 180 215  160 140  170 195 
6 381 430 345  455 390  365 475 
7 346 375 435  375 255  285 350 
8 103 85 125  110 45  75 165 
9 497 490 405  425 585  420 570 

10 219 145 275  265 200  175 270 
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Figure 3. Proportion of participants in Experiment 2 who expected averaging to be no more accurate than 
the average judge (displayed by error pattern and learning environment).   
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Figure 4. Proportion of participants in Experiment 3 who expected averaging to be no more accurate than 
the average judge (displayed by participant’s estimate of the bracketing rate). 
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Appendix 

 
1)  [Absolute Deviation Question] John, Isabelle, and Karla predicted the year end price of stock ABC. 
John missed the true price by $10 and Isabelle missed by $5. Karla overheard the forecasts of John and 
Isabelle and predicted the average of their forecasts. (Please circle a response for a, b, and c): 

a)  Karla missed the true price by less than $5.   Possible   Impossible 
b)  Karla missed the true price by $7.50.   Possible   Impossible 
c)  Karla missed the true price by $10.00 or more.   Possible   Impossible 
 

2)  [Will Rogers Effect Question] A company has two departments, Department A and Department B. 
Department A has 60% men and Department B has 40% men. A group of employees is transferred from 
Department A to Department B. No other employees are moved. (Please circle a response for a, b, c, and 
d.) 

a)  The percentage of men in Department A increases and, at the same time, the percentage of 
men in Department B decreases.  Possible   Impossible 
b)  The percentage of men in Department A increases and, at the same time, the percentage of 
men in Department B increases.   Possible   Impossible 
c)  The percentage of men in Department A decreases and, at the same time, the percentage of 
men in Department B increases. Possible   Impossible 
d)  The percentage of men in Department A decreases and, at the same time, the percentage of 
men in Department B decreases.   Possible   Impossible 
 

3) [Simpson’s Paradox] All employees in a company work in one of two departments, Department A or 
Department B. Each department contains some men and some women. In Department A, the average 
salary of the men is higher than the average salary of the women. In Department B, the average salary of 
the men is higher than the average salary of the women. (Please circle a response for a and for b.) 

a)  In the company as a whole, the average salary of the men is higher than the average salary of 
the women.  Possible   Impossible 
b)  In the company as a whole, the average salary of the women is higher than the average salary 
of the men.  Possible   Impossible 

 
4)  [Mean Absolute Deviation Question] Jill, Steve, and Bill predicted the total number of points scored 
by their favorite basketball player, Alana Beard, in 20 different basketball games. They each tried to be as 
close as possible to the truth. They measured “closeness” by taking the difference between their guess and 
the truth. For example, if Beard scored 20 total points in a game, then a guess of 15 points would miss the 
truth by 5 points; similarly, a guess of 25 points would miss the truth by 5 points. Over the 20 games, Jill 
missed the true point total by 4 points on average (sometimes missing too high, sometimes missing too 
low); Steve missed the true point total by 6 points on average (sometimes missing too high, sometimes 
missing too low). Bill overheard the forecasts of Jill and Steve and predicted the midpoint of their 
estimates for each game. (Please circle a response for a, b, and c.) 

a)  Over the 20 games, Bill missed the true point total by 2 points or less on average. 
 Possible   Impossible 
b)  Over the 20 games, Bill missed the true point total by 5 points on average.  
 Possible   Impossible 
c)  Over the 20 games, Bill missed the true point total by 6 points or more on average. 
 Possible   Impossible 

 
Correct answers:  1a P; 1b P; 1c I; 2a P; 2b P; 2c P; 2d I; 3a P; 3b P; 4a P; 4b P; 4c I. 


