Title: Neuroeconomic Studies of Impulsivity: Now Or Just As Soon As Possible?

Authors:
Paul W. Glimcher (Corresponding)
Center for Neuroeconomics
New York University
4 Washington Place, 809
New York, NY 10003

Joseph Kable
Center for Neuroeconomics
New York University
4 Washington Place, 809
New York, NY 10003

Kenway Louie
Center for Neuroeconomics
New York University
4 Washington Place, 809
New York, NY 10003
Neuroeconomic Studies of Impulsivity: Now Or Just As Soon As Possible?

Paul William Glimcher, Joseph Kable and Kenway Louie*

Existing behavioral studies of inter-temporal choice suggest that both human
and animal choosers are impulsive. One possible explanation for this is that they
discount future gains in a hyperbolic or quasi-hyperbolic fashion (Laibson, 1997;
Frederick, Loewenstein and O’Donoghue, 2002). This observation stands in contrast to
standard normative theory which predicts exponential discounting for any single
maximizing agent (Strotz, 1956). This disparity between empirical and normative
approaches is typically explained by proposing that human choosers suffer from inner
conflict: balancing an impulse for an immediate gratification against other forces calling
for delayed gratification (Thaler and Sheffrin, 1981; Laibson, 1997; Fudenberg and
Levine, 2007; Benhabib and Bisin, 2004; Bernheim and Rangel, 2004; Gul and
Pesendorfer, 2001). We hoped to better understand both the behavioral and algorithmic
roots of this phenomenon by conducting a series of behavioral and neurobiological
experiments on inter-temporal choice. The results of our behavioral experiments deviate
significantly from the predictions of both normative and inner conflict models. The
results of our neurobiological experiments provide new algorithmic insights into the
mechanisms of inter-temporal choice.

1. Experiment One

1.1 Behavioral Measurements

* Paul W. Glimcher, Joseph Kable and Kenway, New York University, 4 Washington Place, 809, New York, NY
10003. USA, glimcher@cns.nyu.edu kable@cns.nyu.edu klouie@cns.nyu.edu. The authors express gratitude to
participants in the NYU Neuroeconomics seminar with particular thanks to Andrew Caplin and Mark Dean.
We measured the preferences of 10 human subjects using a set of 576-720 binary choices that presented options differing in both delay and value. From these measurements we estimated an indifference curve for each subject. This curve identified the value of the options, at delays ranging from 6 hours to 6 months, for which they were indifferent with an immediate gain of $20US. This indifference curve, which can be modeled as the product of underlying utility and discount functions, was hyperbolic as has been previously described (Green and Meyerson, 2004; Kirby and Marakovic, 1995).

During a series of one-hour behavioral sessions subjects were asked to make 144 inter-temporal choices. Each round presented a choice between a certain immediate gain of $20US and a larger certain gain at a delay varying from 6 hours to 6 months (for example 1, 10, 21, 50, 90, and 180 days). Subjects were informed that the first session was unpaid. After completing three behavioral sessions (2 paid), the subjects completed one or two additional choice sessions, this time inside a brain scanner.

Across sessions the exact values and delays presented in the choice set were varied by small amounts. At the conclusion of the second session (and each subsequent session) 4 choices were randomly selected from the set of choices made during that session and the subjects were paid for those decisions. All payments were made through a commercial debit card system that allowed us to load the precise amount of the selected option at the precise time specified by the subject’s choice. Subjects were reminded by email at the time of the delivery of each payment into their debit accounts.
The debit cards we employed are nationally accepted (as credit cards) at millions of locations throughout the United States. Subjects were thus free to consume their gains with negligible transaction costs. As a further benefit, the cards allowed us to monitor the actual consumption behavior of our subjects.

The behavioral data gathered in this way allowed us to identify, for each of the six delays we examined, the amount of money for which each subject was statistically indifferent with $20US paid immediately. We then fit, to these six stochastic indifference points, both hyperbolic and exponential functions. These functions were equivalent to a representation of the discounted utilities that could be used to predict the stochastic pattern of choice made by each of our subjects. We found that, as in previous studies, the behavior of our subjects was better described by hyperbolic than by exponential functions (Laibson, 1997), implying that our subjects employed a hyperbolic-like discount function. We also found that our subjects varied significantly in the rates of discounting implied by this measured function. Our most patient subject and our most impulsive subject differed in the hyperbolic constants that characterized their indifference curves by more than an order of magnitude.

1.2 Neurobiological Measurements

These individually measured indifference curves permitted us, for each subject, to model the discounted utility of each delayed option presented to our subjects in the brain scanner. With this behavioral measurement in hand we could then ask whether any activity in the brains of these subjects was correlated with the discounted utility of
an option under consideration. We found that the activity of the brain in three areas typically associated with option valuation (McCoy et al., 2003; Cromwell and Schultz, 2003; Breiter et al., 2001; Daw, 2006; McClure et al., 2004a; O’Doherty, 2004), in each of our subjects, showed a clear correlation with this behaviorally derived function. Put another way, brain activity measured in the medial prefrontal cortex, the ventral striatum, and the posterior cingulate cortex had many of the properties of that subject’s discounted utility function. Perhaps surprisingly, we saw no evidence in any of these areas of neural functions that were better correlated with functions that were either steeper or shallower (in exponential or hyperbolic terms) than the behaviorally measured discounted utility function for that subject. More unambiguously, we also saw no evidence that activity in any of these areas showed different discount rates. We saw, therefore, no evidence of separable neural agents that could account for the multiple-selves that are used to explain hyperbolic-like discounting behavior. This finding argues strongly against the hypothesis that multiple-selves, with different discount functions, are instantiated as discrete neural systems at the proximal algorithmic level.

This finding contradicts an earlier report (McClure et al., 2004b) that appeared to support the dual-self β–δ model of David Laibson (1997), at a neurobiological level. In that report, subjects were asked to make ~40 choices between gains available at 3 delays. Although that study did not examine the choices made by subjects, the authors reported that they observed higher brain activity for immediate than for delayed option sets in these same three areas. From this enhanced neural response for immediate
options the authors concluded that these brain areas were an “impetuous” agent of the type that would be predicted for the β component of the β−δ model. We note, however, that an area whose activity was linearly correlated with a hyperbolic-like discounted utility function of any kind (which necessarily favor immediate over delayed gains) would also show this property. The critical test of the multiple-selves model at a neural level, which these authors did not perform, would be to show that the area in question discounted faster than behavioral measurements of the subjects’ indifference curves or at least that different brain areas discounted at different rates. We show here that this is not the case.

Our subjects showed hyperbolic-like indifference curves that could be characterized as discounted utility functions. The areas of their brains known to participate in option valuation showed surprisingly similar functions. Although the hyperbolic or exponential coefficients that described the steepness of these neural and behavioral functions varied widely from subject to subject, the behaviorally and neurally measured functions made on a single subject appeared to be tightly – and surprisingly linearly - correlated.

2. Experiment Two

Why do choosers discount hyperbolically? The standard explanation is that this is the result of inner conflict between forces favoring impatience and those favoring patience.. Our neurobiological measurements, however, showed no evidence that these forces reside as physical processes within the human brain. This significant
discontinuity between the behavioral models and the neural structures that actually produce behavior led us to re-examine the behavioral phenomenon of hyperbolic discounting. If internal divisions do not account for inter-temporal choice behavior then perhaps inter-temporal preferences are more complicated than has been previously supposed. In a second experiment we therefore set out to test the hypothesis that the discounted utilities of all prizes, in all choice sets, can be described as functions of the interval between the immediate present and the time of option delivery as is widely assumed.

2.1 Behavioral Measurements

We repeated experiment one with a new group of subjects, but this time randomly intermixed two sets of choices. The first set of choices was identical to those employed in experiment one (the immediate-option set), while the second set used either the same values as choice set one or a set of higher values, with an additional 60 day front-end delay added to all options (the delayed-option set). Thus the earliest possible option, which appeared in every one of the choices in the second set, was a gain of $20 at a delay of 60 days or a larger gain ranging between subjects from $30 to $60 at a delay of 60 days. The delivery date for the more delayed option in these choices ranged from 61 days to 180 days.

We then analyzed the data from each choice set separately, as described in experiment one. Choice data from the immediate-option set was again used to identify the point of stochastic indifference for each of six delays. Hyperbolic and exponential
functions were fit to these indifference points and the functions we obtained were not statistically distinguishable from those observed in experiment one. The exact same analysis was then performed on the delayed-option set. For this analysis of the delayed-option set we therefore plotted the stochastic indifference points as a function of the interval between the two options in the choice set. On this graph, $20 at a delay of two months would therefore constitute the earliest possible time-point and, as in the immediate-option set, this option was assigned a discounted utility of 1. Perhaps surprisingly, we found that for each individual subject the hyperbolic function that stochastically fit the choice data from the immediate-option set also fit the choice data from the delayed-option set. The indifference curves of our subjects were just as hyperbolic when making choices at delays of two months as they were when making choices as no delay. This is a behavioral observation not predicted by existing multiple-selves models.

The preference data we gathered in this experiment were thus similar to the preference data we gathered in experiment one, but place some additional constraints on preference ordering. Specifically, the indifference curves were found to be functions not just of gain and delay but also of the time of the earliest possible gain in the choice set. In other words our subjects were not simply impulsive, strongly preferring immediate gains. Instead they appeared to strongly prefer gains “as soon as possible” regardless of whether as soon as possible was a matter of minutes or months.
While this new observation may be useful we can make an additional measurement with the brain scanner. We know that brain activity in the ventral striatum, the posterior cingulate cortex, and the anterior cingulate cortex shows a correlation (in fact a surprisingly linear correlation) with discounted utility measured in the immediate-option choice set. We can ask whether activity in these areas is also correlated with discounted utility as measured in the delayed-option choice set and we can ask how activity for these two choice sets is related.

2.2 Neurobiological Measurements

We therefore examined the brain activity of our subjects while they made these immediate and delayed choices. Recall that the brain scanning data from experiment one revealed neural activation functions that were approximately linearly correlated (at the within-subject level) with the discounted utilities of the delayed rewards presented as options in that experiment. With these data we can predict the discounted utility of a delayed choice from that choice set using a neural measurement.

The brain scanning data indicate first, that the discounted utilities measured in the delayed-option choice set are also approximately correlated with brain activation in all of these areas. Second, the data show that overall activity for the delayed-option choice set is much lower than for equally valued the immediate-option choice set. Empirically we observed that the overall decrease in activity, the fractional rescaling of the neural activation function, can be roughly predicted by an exponential fit to the other neural activation function gathered during choices made about the immediate-
option set. The decline in activity observed for a two month delayed option in the immediate set reflects a scaling factor that predicts, roughly, activity to the 2 month delayed option in the delayed-option choice set. This may be an important mechanistic observation. Despite the fact that our subjects prefer gains “as soon as possible” regardless of when as “soon as possible is”, their striatal and cingulate brain activity is a decreasing monotonic function of the delay to the soonest possible reward. The following section briefly presents a model of neurobiological computations that may be relevant to both the behavioral and neural data here.

3. Model

We present next a two stage stochastic model of neural activation that predicts muscle contraction. In the first stage of the model, for each option, striatal activity (at a distinct anatomical location for each option) is a monotonic increasing function of value. For immediately available options this is now a well documented property of the striatum. The data presented here suggest that these activity levels are also a decreasing monotonic function of delay from the present to the time the option is realized. We write this neural activation function as: Activation = \(\delta_i(t)U_i(v) \).

Our pre-existing evidence suggests that these activations related to value are passed (indirectly) to the parietal cortex. Within the parietal cortex it is also known that, for available actions, the activity of computational elements (at distinct anatomical locations for each option) is a monotonic increasing function of the relative value of the
striatal activity, in this case $\delta_1(t) U_1(v)$. The form of this rescaling operation has now been well described in other cortical areas and is believed to take the form:

$$\text{activation} = \frac{\left[\delta_1(t, \tau) U_1(v) \right]}{\sum_{i,j} \omega_{i,j} \left[\delta_1(t, \tau) U_1(v) \right] + C_0}$$

where $\delta_1(t, \tau)$ is the exponential decrease in activity (for option 1) as a function of the delay to reward and the neuronal discount rate, $U_1(v)$ is the increasing monotone relationship between the value of option 1 and activity, $\omega_{i,j}$ is a weighting term that maximizes statistical independence in the activity of the computational elements (after Schwartz and Simoncelli, 2001), and C_0 is a constant. This rescaling operation is then used as the independent variable in a logit function that yields the probability that the muscles responsible for selecting option 1 are activated. For a binary choice in our task this would resolve to:

$$\text{parietal activity} = \frac{\left[\delta_1(t, \tau) U_1(v) \right]}{\omega_{1,j} \left[\delta_1(t, \tau) U_1(v) \right] + \omega_{2,j} \left[\delta_2(t, \tau) U_2(v) \right] + C_0}.$$

While the choice-theoretic implications of this identified neural algorithm are unclear, it is clear that these computations are being performed by neural circuits without which choice does not occur. One striking feature of these computations for economists may be the observation that the activity of all computational elements in parietal cortex is always influenced by the size and delivery time of the soonest possible reward, a reward that might be considered a temptation.
4. Discussion

We employed both behavioral and neurobiological methods to examine inter-temporal choice. Our goal was to use a revealed preference approach to study choice and then to use the results of this revealed preference analysis as the starting point for a neurobiological analysis. While we did find behavioral evidence for hyperbolic or quasi-hyperbolic discounting, we found that our neurobiological data did not support the hypothesis that these discount functions are the product of multiple agents within the human brain.

It has been argued recently (Gul and Pesendorfer, 2007) that a choice-based theory cannot be falsified by the observation that the algorithmic structure of the human brain is incompatible with the computations required by that theory. This is undoubtedly true. Still, at a purely strategic level it seems imprudent to ignore any observable that may provide insight into choice behavior. On these grounds we undertook a second experiment with two goals. First, we hoped to more completely characterize choice behavior under conditions of variable delay. The existing behavioral models (which we found incompatible with our neural measurements) make clear predictions about choices amongst multiple delayed alternatives which we hoped to test. Second, we wanted to further examine the neural evidence for models of internal conflict. The simplest neurobiological test for an “impetuous region” is to scan subjects making choices from sets that either do or do not include an immediate option (a point made to us by George Loewenstein). An impetuous region should be active only in the
immediate-option set – a distinction which should make the impetuous region easy to identify neurally.

At the behavioral level we found that rather than being simply impulsive as has been previously supposed, our choosers seemed to adopt an “as soon as possible” rule. The soonest possible gains were preferred at a more than exponential rate, regardless of when those soonest possible gains became available and again, our neurobiological data again showed no evidence for an impetuous self. Finally, the relationship between a neural variable (activity in the ventral striatum, anterior cingulate and posterior cingulate) and discounted utility as measured in both choice sets may impose some additional constraints on the representations of utility that future models can employ. Finally, The model we developed from our neurobiological observations can predict brain activity and muscle activations and may raise interesting questions for economic study at the axiomatic level.

5. Summary

A small group of scholars committed to the revealed preference approach have recently begun to propose that economics must search for additional observables that can be used to test and examine existing models. Caplin and Dean (2007), for example, have proposed that the axiomatic reasoning that has characterized the study of revealed preference can be extended to the study of neurobiological variables that actually govern choice behavior. This seems to us an incredibly powerful new direction that could revolutionize both economics and neuroscience. Neurobiologists interested in the
algorithmic structure of the brain have begun to reveal many of the proximal mechanisms by which choice is produced. Algorithmic mechanisms for preference ordering, stochastic choice, and even value construction have all been identified in recent years. Given these new observations it seems only natural to ask whether these already existing observables can be used to examine, even falsify, existing revealed preference-based theories of choice. At the moment neuroeconomists seem to be dividing into two camps. The first of these camps has used neurobiological data to argue against a revealed preference analyses of choice (Camerer, Loewenstien and Prelec, 2005). Here we argue for a different road. We believe that the revealed preference approach brings an unparalleled power to the study of choice.

Contemporary neurobiology brings a similar power to the study of mechanism. It is the combination of these two tried and tested approaches that we believe can revolutionize both disciples.

6.0 References

Caplin and Dean (2007) Dopamine and Reward Prediction Error: An Axiomatic Approach to Neuroeconomics. AER. this volume.

